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ABSTRACT

Described is an experimental technique for providing long-
duration pulses which can be applied to a part or all of a simple
structure such as a beam, plate or cylinder. The technique employs
essentially the familiar shock tube except that the detonation front of
a gaseous explosive provides the shock wave. Many pulse shapes can
be produced by placing in the tube and against the target, layers of
dif ferent materials such as styrofoam, polyurethane, and Mylar,
and by aending the explosively-induced shock wave through them to
the target. The search for pulse shapes was mainly confined to those

of the blast type but the generation of other types is equally feasible,

Outlines of the theoretical treatments of four problems are
given. They concern the responses of (a) a clamped beam to a blast
pulse uniformly distributed over a central length, (b) a simply supported
circular plate to a blast pulse uniformly distributed over a central
circular area, {(c) a clamped circular plate to a rectangular pulse uni-
formly distributed over the whole plate, and (d) a clamped circular
plate to a rectangular pulse uniformly distributed over a central circular
area. Analytical treatments employ the rigid-plastic theory because of
interest in moderately large permanent deformations and relative sim-

plicity of analysis.

Long-duration pulses were applied to clamped beams and clamped
circular plates, and the permanent central displacements are correlated

with theoretical predictions.

A preliminary arudy is made of the modification of the applied
pulse due to the mobility of the target.

114



AFWL-TR-65-81

This page intentionally left blank.

iv



CONTENTS

SECTION
I INTRODUCTIOY . . . . . . . . . . ..
II EXPERIMENTS.
1. Long-Pul!se Technique .
2. Photodiode Experiments .
35 Mathematical Model . n g
4, Structural Experiments . . . . ,
5. l.arge Surface Loading .
III CLAMPED BEAM.

Iv

UV op W N

SIMPLY SUPPORTED RIGID-PLASTIC PLATES UNDER

Introduction.

Mechanisms of Deformatxon
Permanent Deformations .
Results. . . ., d I
Conclusions. . . . .

BLAST LOADING.

1. Introduction . ;
2. Deformation Under Low Peak Preuurel
CLAMPED RIGID-PLASTIC PLATES UNDER BLAST
LOADING . . . . kb

1. Introduction ., . o v e e
2. Mechanisms of Deformatxon S e g O 5
L Governing Equations ., .

4. Solution for Rectangular Pulse

- ) Conclusions

6. Description of Expe rimr-nts

7. Experimental Results and Observatmns

20
25
26
26

29

29
30
38

47

65
66

71

71
72
74
76
84
87
90



CONTENTS (Continued)

vl CLAMPED CIRCULAR RIGID-PLASTIC PLATE“

UNDER BLAST LOADING . . « ¢« « . « . . - 97
1. Introduction. . . . . : AL w s B e 97
2. Mechanisms of DeformatiOn. A B P . 98
3. Governing Equations . . . A A N 102
4. Solution for Rectangular Puhe P e & e 107
8. Results and Conclusions . . . . . . . . . . 114
6. Description of Experiments . . . . . . . . . 119
7. Experimental Results and Observations. . . . 122
VIl MATHEMATICAL MODEL OF SPRING MASS

SYSTEM . . . . S @ i b B & 129
1, Introduction . . . TR RN 129
2. Spring -Mass Sy.tem o 4 444 s s 3 3 129
3. Solution of the Differential Equatiom bw o B 131
4, Numerical Results and Comparisons with

Ex”riment.. L] . L] L] . L] L] ] L) . L] ] . L] L] 132
vl DEPENDENCE OF DAMAGE ON PULSE SHAPES . . 137

1. Introduction. . . . >« @ b "BI B 137
2. Simplest Rigid- Pla.tic Sy.tem o W £ A o R & 137
3. Rigid-Plastic Cylinder . . . L& m ok 5T 141
4, Simply Supported Circular Plate . s S L% % & 142
5. Rigid-Plastic Beams . . . . g o & 142
6. Rigid-Plastic Beams with Moving Hinges « 3 B 143

APPENDmA L] * [ ] [ ] L] L] . [ ] ] . () E ] . o * ] . ] L] . o 149
APPENDmB [ ] ) . ] ] ') . (] . * . '] . ] . ] ] ') . [ . 155
REFERENGCES. . .« + o v v v v oo i 157

DISTRIBUTIW ® o o 8 e © o o 0 e o s 0 0 O o e o o o ¢ s 161

vi



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17
3.1

ILLUSTRATIONS

Oxyacetylene Shock Tube . . . . . . . .

Oxyacetylene Shock Tube . . . . . . .

Rod-Gage Record—Oxyacetylene Gas Pulse .

Typical Spring-Mass System . . . . . .
Rod-Gage Records . . . . . . . . .
Rod-Gage Records . . . . . . . . . . .
Rod-Gage Records . . . . . . . . . .
Rod-Gage Records . . . . . . . . . . .

Rod-Gage Records . . . . . . . . . . .

Experimental Arrangement—Shock Tube of

Rectangular Cross Section . . . . . . .

Diagram of Photodiode Setup (during motion).

Experimental Arrangement for Photodiode
Measurements . . . .+ . . . . . . . .

Experimnental Arrangement for Photodiode
Measurements . . . . . . . . . . . . .

Experimental Arrangement for Photodiode
Measurements . « . . . . « 4 « 4+ o o o

Photodiode Reccrds Experimental Configura-

tion Associated with Fig. 2. 9(e) (Ladder has

50 lines/inch) . . . . . ¢ . s

(x, t) Plots for Free Disk—Configuration of

Flg. 2.9 « « « . « s e s 4 4 9w

.

Section of a Two=Unit Assembly of Shock Tube.

Clamped Beam Problem . . . .

3.2 (a) Deformation Mechanism Diagram . . . .
3.2 (b) Defor-aation Mechanism Diagram . .

vii

11
13
15
17

19

20
21

22
22

23

24

25

27

29

n
r 4

40



Fig. 3.3
ig. 3.3
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7

(a)
()
(c)

()

(c)

(1)

(®)
(c)

(a)
(b)
(c)

(®)
(c)

ILLUSTRATIONS (Continued)

Pressure Ratio vs. Midspan Deformation:
Rectangular Pulse . . e e e e e e
Pressure Ratio vs. Midspan Defrcmation:
Triangular Pulse . . . . . . « . . . .
Pressure Ratio vs. Midspan Deformation:
Exponential Pulse . . . . .« . « . . . . .

Comparison of Pressure K*tio vs. Midspan
Deformations for Rectangular, Triangular,
and Exponential Pulses (loaoing length ratio:
one quarter). . . . s oo
Comparison of Preuure Ratio vs. Midepa“.
Deformations for Rectangular, Triangular,
and Exponential Pulses (loadmg length ratio:
one half) . . . .« .« .

Comparison for Pressure Ratxo vs, Mldspa.n
Deformations for Rectangular, Triangular,
and Exponential Pulses (loadmg length ratio:
ibree quarters) . . . .

Comparison for Pressure Ratio vs. Mldspan
Deformations for Rectangular, Triangular,
and Exponential Pulses (loadmg length ratio:
total span) . . . . . . . .

Pr«ssure Ratio vs. I'npulse: Rectangular
Pulse., . . . . . . . . o o o
Pressure Ratio vs. Impulse: Triangular
Pulse . « . « « « o ¢ « o o o o o o o«
Preerure Ratio vs. Impulse: Exponential
PuiB€ e« « o ¢ o + s o o o o o s s 4 s s
Pressure Ratio vs. Impulse: All Pulses
Eo=1/4 « ¢« o o 0 v e e e e e
Pressure Ratio vs. Impulse: All Pulses
;ozl/Z...............
Pressure Ratio vs. Impulse: All Pulses
Eo=1 « « 0 3 « B &l 3 E
Pressure -Impulse Diagram: Rectangular
Pulgse. . . . e e e e e e LI
Pressure- Impulse Dxagram Triangular
Pulge. . . . . o« s
Pressure -Impulae Dlagram Exponennal
Pulse. « ¢« ¢ ¢ o ¢ o « o o+ o @

viii

48
49

50

50

51

81

52
52
53

53
54

54

55
55
55



Fig. 3.8 (a)
®)
(c)

Fig. 3.9

Fig. 3.10 (a)

()

(c)
Fig. 3.11
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.8
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9

ILLUSTRATIONS (Continued)

Pressure-Impulse Dxagram All Pulses
o2 l/d v v o o 5 u's ; ; P oL
Pressure-Impulse Diagram All Pulles
Po B l/2: 6 o 6 « a0 e § L
Pressure-Impulse Diagram: All Pulaes
;03 * ¢ & & s s s s s = s+ e e & e e

Pressure vs. Deflection: All Pulses
;O = 1/40 l/zp and, l . . . . . . . .

Deflection, Loaded Length, Pressure
Relationship: Rectangular Pulse . .
Deflection, Loaded Length, Pressure
Relationship: Triangular Pulse .
Deflection, Loar<d Length, Pressure
Relationship: E:tponential Pulse . . . . .

Deflection, Loaded Length, Pressure
Relationship: All Pulses p =20, . . . . .

Circular Plate Problem . . . . . . . . .
Tresca Yield Hexagor . . . « . . . . .
Plate Element . « . . . . « ¢« ¢« ¢ « & &
Deformation Mechanism Diagram . . . . .
Idealized Blast Pulge. . . . . . . . . . .
Mechanism 1l . . . . « . « o o o 0 ..
Tresca Yield Hexagon . . . . . . . .
Mechanism2 . . . . . . . . . .
Variation of § with n During Phase 1b . .
Variation of {( with € During Phase 2

Variation of Po and P with 1. X =2, 24.

Variation of p and P with 7. X =6,51.

o}

Variation of p_ and P with 1. X = 56,13

o

ix

56
57

57

59
60
61

62
65
65
66
68
72
72
73
73
79
81
81
82
82



Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

4 Fig.

Fig.

Fig.

Fig.

Fig.

E‘ Fig.
E

6.3
6.4
6.5
6.6

. &7

6.8

6.9

6.10

6.11

6.12

6.13
6. 14

ILLUSTRATIONS (Continued)

Relationship Between 6, A and I.

Pressure-Impulse Diagram .

Experimental Arrangement .

Experimental Arrangeme:

(Dismantled) .

Theoretical and Experimental Results

Circular Plate Problem.
Idealized Blast Plate .

Tresca Yield Hexagon

Mechanism 3

Deformation Mechanism Diagram

Trajectory of
and A =15 .

Trajectory of
and A =15 .

Trajectory of
and » =15 .

Trajectory of
and \ =15 .

Variation of p

a = 0.438 and® K

Va rutlon of 6

= 0,656 and® k-

Variation of p
a =1 and \

(;lﬁ gzo T])fOI‘ a =

(§,+ 8, n)for a

0.438

0.656

(DO. Dl » pz) for a = 0.438

(po. Py pz) for a = 0.656

» and p
2 e B

Pressure -Impulse Diagram .

ll' and p2 with

with

1 for

1 for

» P, »and p, with 71 for
2154 . . 2L,

Relationship Among &6, A\ and 1

85
86
88
89
92
98
98
99
100

102

113

113

145

115

116

116

127
118

119




ILLUSTRATIONS (Continued)

Fig. 6.15 Variation of Pressure with Loaded Area . . . 120
Fig. 6. 16 Experimental Arrangement . . . . . . . . . 121
Fig. 6.17 Two Plates After Deformation. . . . . . . . 122
Fig. 6.18 Theoretical Curves and Experimental Points . 125
Fig. 7.1 Spring-Mass System . . . . . . . . . . .. 129
Fig. 7.2 Streas-Strain Diagram for Polyurethane

Foam . . . . . . ... ... .. 130
Fig. 7.3 Polyurethane Spring Properties ., , ., . . . . 130
Fig. 7.4 Experimental and Model Pulses —Configurations

HTFig, 2.9) . . ¢ o v s e e s g 132
Fig. 7.5 Experimental and Mode) Pulses —Configurations

oA Fig. 2.9@) . . . . . . . ¢ 4 i 0w s 0w 134
Fig. 7.6 Experimental and Model Pulses —Configurations

of Fig. 2.%d) . . . . . . « « 4 & v v v v & 134
Fig. 8.1 Simplest Rigid-Plastic System . , . . . . ., 137
Fig. 8.2 Impulse-Time Diagram-—Case 1 . . . . . . 140
Fig. 8.3 Impulse-Time Diagram-—-—Case2 . . . . . . 141
Fig. 8.4 Beam Problem . . . . . . . . . . .. .. 144
Fig. 8.5 Impulse-Time Diagrams . . . . . . . . . . 147

xi




Table 2.1

Table 2.2
7'able 2.3
Table 2. 4
Table 2.5
Table 3.1
Table 3.2

Table 5.1
Table 5.2
Table 5.3
Table 6. 1
Table 6.2
Table 6.3

TABLES

Experimental Data. . . . . . . . . . . ., .
Experimental Data. . .

Experimental Data. . . ., , ., . . . .
Experimental Data. . . . . . . . . ., . .

Experimental Data. . . . . .

Lower Bounds for A\ and p Giving &6 > 0.86. ;

Lower Bounds of \ Reqmrmg 1 /I <l1.1 to
Maintain 6 . . . . . o e 6

Initial Values of § and n

Experimental Results . . . . . . .
Response Times of Fundamental Modes . . .
initial Values of Py » Py and Pp o ¢ o
Experimental Results . . . . . . . .

Response Times of the Fundamental Modes.

xii

10
12
14
i6
18
47

48
77
91
93
108
124

125




SECTION I

INTRODUCTION

Re-entry vehicles are liable to be subjected to loads ranging
from sharp pulses, which for structural response may be considered as
ideal impulses, to pulses with durations comparable to the fundamental
elastic response times. Short-duration loads have been applied in tests
on actual ICBM structures [ 1.1 = 1. 4]* and in experimental and theo-
retical studies of simplified ICBM structural components such as cylin-
ders, plates, and beams [ 1.5 - 1.25]. As a result much is known about |
response to short oulses. Less is known about the effects of long-duration ‘
pulses [ 1.26 - 1.29] especially when these act only on parts of a struc-
ture. One reason for this deficiency is the dearth of meaningful experi-
mental results and this in turn is due to the need for controlled long-

duration loading techniques.

In Section II is described such a technique suitable for applying
loads to part of the surface of a structure. The development was

guided by the following pulse requirements:

(1) low peak pressures,

(2) durations comparable with fundamental elastic response
times,

(3) rise time much smaller than duration, ‘

(4) sharp edges to the pressure distribution whenever appro- |
priate, i
(5) pulse shape control, and

(6) adaptability for use over larger areas.

The long-duration loading technique meets these requirements, partly
chosen so that pulses of the blast type (sudden pressure rise and
gradual decay) are included, but in addition it provides mediumand high
peak pressures, medium-duration pulses, and shapes other than those

associated with blast pulses. Section II also includes a preliminary

" 2 b ac/ak ; .
Numbers in brackets indicate refererces listed at the end of .nis report.




study of the effect on the pulse of the mobility of the target and it is
concluded that the effect can definitely be first order.

Section III is a theoretical study of the response of a clamped
beam subjected to a blast pulse uniformly dist .buted over a central
part of the span. On the basis of interest in moderately large perma-
nent deformations the rigid-plastic theory is employed. This theory
neglects elastic deformations and provices a relatively simple approach.
The clamped beam problem was chosen primarily because of its sim-
plicity and because it gives much insight into the response or deforma-
tion mechanisms. Some structural experiments were performed on
clamped beams but since the reproducibility required some improve -
ment the results are regarded as preliminary. They indicate that the
predicted darnage is from 2 to 4 times the actual damage.

Section IV is a theoretical sutdy of the response of a simply
supported plate subjected to a blast pulse uniformly distributed over a
central circular area. The solution, which again uses the rigid-plastic
theory, is for low peak pressures only, cr rather for low values of the
ratio of the peak pressure to the static collapse pressure acting on the

same area,

Section V is a theoretical and experimental study of the response
of a clamped circular plate subjected to a blast pulse over the whole
area of the plate. Using rigid-plastic thecry a solution is presented for
the special case of a rectangular pulse. In the experiments, the plates
were subjected to blast pulses having an exporential decay. Hence true
correlation of theoretical and experimental damage is not achieved. It
is believed that the rectangular pulse among all blast pulses with the
same pressure and impulse causes the greatest damage and the corre-
lation showed that the predicted damage is from 3 to 7 times the actual
damage, so with true correlation these values should be reduced. This
problem was chosen as a preliminary to that in Section VI, where the
plate is partially loaded, because of the complexity of these kinds of

problems.




Section VI is a theoretical and experimental study of the response
o1 a clamped circular plate subjected to a blast pulse over a central
circular area of plate. Using rigid-plastic theory a solution is
presented for the special case of a rectangular pulse. In the experi-
ments, the plates were subjected to pulses which may be considered
approximately rectangular but having an expcnential decay. Correlation
of the theoretical and experimental central deflections shows {hat the
predicted damage overestimates over the wide range of factors from
2 1/2 to 24. The large factors are attributed partly to the fact that
the experimental pulse is not rectangular and partly to the use of thin

plates which, due to their mobility, do not receive the full impulse,

Section VII is a description of a simple mathematical ri.odel of the
experimental configuration of the long-duration loading technique.
The model successfully describes the mechanics of the operation and
forms a good basis for further refinement. It is a valuable aid to

experimental design towards achieving the pulses desired.

Section VIII is a study of the effect of puise shape on simple rigid-
plastic structures. It is proved that for a certain class of structures
the rectangular pulse, among all pulses of equal peak pressure and
impulse, causes the greatest damage. It is also indicated that the
theorem is true for a wider class of rigid-plastic structures. The
importance of this study lies in the fact that it is much easier to
analyze structures when the pulse is rectangular and the result serves

as an upper bound on the damage acquired.
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SECTION 1II

EXPERIMENTS

L. Long-Pulse Technique

In developing a technique for providing and applying long-duration

pulses the following properties are being sought:

(a)  pulse duration about 1/2 msec,

(b) short rise time to peak pressure,

(¢}  monotonic decay following peak pressure,

(d) uniform pressure distribution on loaded surface,

(e) each load unit applicable to small area of structure, and

(f)  units capable of being combined for larger surface loading.

An experimental arrangement which provides pulses meeting the
above requirements when they are applied to fixed targets is shown in
Figs. 2.1 and 2.2. It essentially consists of a shock tube in which the
shock is the deton~tion front of a 50/50 gaseous mixtire of oxygen and
acetylene. One end of the tube is placed against a fixed target plate,
the junction being made air-tight by means of a rubber gasket. In the
fixed endplate is mounted a pressure transducer. The open end of the
tube is sealed with a sheet of Mylar. Inlet and outlet hoses for the gas
mixture pass through this Mylar sheet. The gas is detonated at the
opposite end of the tube to the pressure transducer [2.1], so that the
detonation front travels towards the endplate producing an instantaneous
rise of pressure there and a pulse duration depending on the tube length.
Figure 2.3 shows a typical pulse obtained with this experimental arrange-

ment.

One limitation of this arrangement is that the peak pressure is
always a constant for a given gas mixture although this can be relaxed
somewhat by varying the ratio of oxygen to acetylene. Also the form
of the decay in pressure remains the same, its rapidity depending on

the tube length. Another and more important limitation for spot
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FIG. 2.2 OXYACETYLENE SHOCK TUBE

applications is that separaticn of the target and tube allows rarefaction
waves to travel over the target surface and rapidly curtail :he pulse
duration. The arrangement is, however, suitable fur clamped plates

where the plate support is an extension of the shock tube (see Section V).

An arrangement which does not have these limitations and pro-
vides innumerable pulse shapes consists of filling the end of the tube
next to the target with various materials on which the shock wave
from the detonated gas must act. Ore such arrangement is shown
schernatically in Fig. 2.4 where alternate layers of polvurethane foam
and Mylar form a spring-mass system. Between the gas and the foam-

Mylar combination is a layer of styrofoam which acts as a light piston

W'




FIG. 2.3 ROD-GACL RECORD — OXYACETYLENE GAS PULSE

and helps to spread the pressure uniformly over the face of the target.
By changing this system of masses and nonlinear springs various pulse

shapes can be obtained.

It is desirable that the compressed spring-mass system should
be much more flexible than the target to minimize the disturbance of
the uniformity of the pressure distribution as the target deforms.
This property influenced the choice of the spring material and mass

geometry.

In Figs. 2.5 to 2.9 are displayed sequences of pulses that have
been obtained by varying certain parameters of the spring-mass
system of Fig. 2.4. Attention has been focussed on obtaining pulses
which can be approximated by rectangles, triangles, exponential
curves or simple combinations of these. Many of the pressure records
display the oscillations of the systems but they are of such high fre-

quency that a structure will respond only to the mean pressure,




-

Details of the pulses and config-

E ROD urations are shown in Tables 2.1

% GAGES ]
to 2.5 on the pages opposite the
OXYACETYLENE GAS

pulse records. The main obser-

STYROFOAM PISTON e vation to be rnade is that a fairly
L $14 :
. : 1

POLYURETHANE ‘FOAM —erere high degree of control of the pulse

shaping can be obtained with the

FIG. 2.4 TYPICAL SPRING-MASS SYSTEM  gpring-mass system. Furthermore,
the pulse shaping experiments are

reproducible and provide a reasonably uniform pressure distribution

over the target face. This last point was established by using three

rod gages, located at the center, a half-radius point, and close to the

edge of the target area.

In addition to the cylindrical tube experiments, spring-mass
systems were tried in a tube of rectangular cross section. Similar
pulse shapes were obtained but both the reproducibility and uniformity
of pressure distribution were found to be unsatisfactory (for example,
peak pressure variation was + 10%). These deficiencies are attributed
to the cross-sectional dimencions of the tube used in the experiments.
A rather narrow rectangle,5 inches by 1 inch, was used resulting in
the intrusion of the edge effects (friction, slight lack of fit of spring-
mass system, etc). Should a rectangular tube with the same aspect
ratio for the cross section be required for an experiment it is suggested
that the scale be increased to provide 10 inches by 2 inches, say. Also,
it would be desirable to provide finer tolerances by using machined
parts. Figure 2.10 shows the experimental arrangement using a tube
of rectangular cross section located vertically over three 3-foot rod

gages.




Spring -Mass System for Pulses of Figs. 2.5(a) to (d)

Configuration Di‘aﬂam y
POLYURETHANE FOAM
STYROFOAM
\ ‘MYLAR
\ énoo GAGE
OXYACETYLENE
TARGET

Le - Le

Table 2.1 — Experimental Data

SCALLS
(eidee of equare grid)
P Peak
DIMENSIONS -

u Presosure Impulee
| i {Inches) Upper Trace Lower Trace P ) “b_."“nz)

.
3 s L' Lo L‘ le L' Vert. | Horiz, Vert. | Horis. {ib/in")

(/1n%) | weec) | (b/in?) | poec)

32 |12 9 i 658 i00 1310 100 i0is 0,324
" " 7 " " " " " 114 0.382

g s " " " " " l‘o’ o_z)b
" " 3 " " " " " 1836 0.277

The Mylar dieke are 10-mile thick and are iocated at i/2-inch centers.
Impuiee vaiuee are obtained by crude curve fitting.

w”’-"‘

o L s B
anoe
BN

Deneity

Materiai
lb/ﬂl .m/cm’
g Styrofoam 4 0.

L Polyurethane S 0.
4 Myiar 8.4 1.

=

64
40

-0

1 Observations

1. Trend of the sequence is from an exponential curve to a triangle,

_* 2. Peik pressures increase monotonicaiy from about 1000 lb/in2
' to 1800 Ib/in,

5 Impulses tend to decrease.
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FIG. 2.5 ROD-GAGE
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Spring-Mass System for Pulses of Figs. 2. 6(a) to (f)

Con}iguration Diag ram

-POLYURETHANE FOAM

STYROFGAM
\ MYLAR
\ / ROD GAGE
OXYACETYLENE
TARGET
e \h— Lim -—.} -
L. L'
o Ly Lo ——o=
3 Table 2.2 — Experimental Data
&
E SCALES
2 ‘P DIMENSIONS (sldes of square grid) Peak
1 {inches) Upper Trace Lower Trace | Pressure | 1 lee 2
‘r s pmz {(Ib-sec/In")
Tai' selL L |L L‘ L Vu Horls, \rort2 Horls. | (1b/in®)
" 8] o) o Im] "t linsin®) | pusec) [(v/1nd) | sec)
| als2|i2]14] 9 1| ess 100 1310 100 1080 0. 346
' ”" ‘l " . (1] " " " " l“o 01 ’.9
r " lo " 1 " " " " " ls’o o. szl
) ‘ ” ’ [1} ‘ " " " L1} n l.’o o. "’
! T‘é‘g ) " 1 o ‘ " " so " so z‘zo o‘ 5"
E ¥ ‘ " ‘ ”" ’ " " " n " ’ l‘o o. s l.
] E The Mylar diske are 10-mils thick ard are located at 1/2-Inch centers.
- Impulse values are obtalned by crude curve fltting.
o
Density
Materisl 3 3
/" | gm/cm
Styrofoam 4 0,064
Polyurethane | S 0. 080
- Mylar 8.4 | 1.4
W -
Observations
Trend of the sequence is from a slowly decaying exponential

curve toward a rectangle followed by a rapidly decaying exponen-
tial curve.

2. Peak pressures increase monotonically from about 1000 lb/in2

to 3200 Ib/in2.

3 Impulses,generally higher than those of Fig. 2.5,tend to increase.

12




FIG. 2.6 ROD-GAGE RECORDS
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Conﬁ‘urntion Diap;m

Spring-Mass System for Pulses of Figs. 2. 7(a) to (d)

POLYURETHANE FOAM

by a triangle or exponential curve.

STYROFOAM
MYLAR
’/ROO GAGE
OXYACETYLENE
TARGET
i '\L_ L'- —J)
L' Ly
L| e Ls
Table 2,3 == Experimental Data
# i I.C‘ALI'.S : .
oldes of square grid Pe
. D*:E::::?m 2 Ptu:lu Impulee 2
] Upper Trece Lower Trece | (Wb-sec/in")
s 2
o JL L L IL Vert Horle, Vert Horle. {1b/1a%)
] ol s m L' (lhlla,) Giaec) (hlh’) Goec)
ajfd2ji0j2 0 [ ] 680 100 1340 100 1630 0.49%
‘ L] “" L] z ‘ " (1] " " ',‘o o. 4 “
e " " " 4 4 " L " [ 1] ]z’o 0.504
d | " - [ 2 " L] L o 1230 0.566
. The Mylar dlsks are 10-mils thick and ere loceted ot 1/2-inch centere.
Impuiss velues are obtalned by crude curve fitting.
Denelty
Material
n»m’ .mlcm’
Styrofoam 4 0.064
Pol'y\luthau .3 2 ;H‘no
Myler . .
ol
Observations
1. Trend of the sequence is from a triangle to a rectangle followed

2. Peak pressures decrease monotonically from about 1600 lb/in2

to 1200 1b/in2.

3 Impulses in the same range as those of Fig. 2.6 and tend to
increase.
14
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FIG. 2.7 ROD-GAGE RECORDS
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Spring-Mass System for Pulses of Fige. 2.8(a) to (f)

Configuration Diagram

POLYURETHANE FOAM

STYROFOAM

MYLAR
\ ',noo LYY

OXYACETYLENE '
&S TARGET
< \ﬂ—- L'. —4 e
‘-. L'j
L. LQ

Table 2,4 = Experimental Data

SCALES

4 DIME NSIONS No. of 10-mil Mylar Dishe (sides of equare grid) LU | i

) (imehos) at 1/2-inch Specing _ L _Upper Trace Lower Trece "'""' (b':?::;:nzl

o TR [oe [ tm | & Ordered from ’“"‘“"": Vers. THorin. [ var.. THorle. aind)

lﬂ KId /1" )| Gsvec) | (B/in7){ bseec)

als2liofla e o} 2a22zrn "e] 00 100 1360 100 Y] 0.413
Isl= = |=1s |s|azazznrvnay hief = " " " 908 0.542

el " f»lo1e J2a ] 22azaririannnggue} = " " " 108¢ 0.483

dfln | »]v e te] 332221111 LR " 30 " 0" 0.44%

. U is 4332221111 20] » " " " 760 0.516

t]- " l’ 44383222111 123 " “ " 2 0. 426

1
Denslty
Mate rial
n/n’ .mltm’

Styroloam 4 0.064

Polyurethane L] 9.080

Mylar 7.4 ] 1.4

Observations

| Pulse shapes do not change radically.

2. Peak pressures increase monotonically in subsequence (a), )

(c) from about 950 1b/in to 1050 1b/in® and decrease monotonically
in subsequence {d), (e), (f) from about 850 1b/in2 to 650 1b/in‘.

3. Impulses remain fairly steady and are in the same rangeas those of
Figs. 2.5, 2.6 and 2. 7.
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Conﬂ‘uration Dia‘rnm

STYROFOAM

OXYACETYLENE

POLYURETHANE FOAM

Spring-Mass System for Pulses of Figs. 2.9(a) to (d)

MYLAR

F_

Table 2.5 — Experimental Data

LROD GAGE

TARGET

P {oide o o 14)
Y

. “":::*3" No. of 10-mil Mylar Diske e o....2 0
1 st 1/2-inch Spacing Upper Trace Lower Trace biads il 0l o ;: 2
. % P Ordered from Styrofoam o~ - — - — 7‘"}) (d-sec/in")
[ ort oris, ert oris. (b

o| Yo f Lm i rind)| groec) | anlint) | turec) "
siuulzl2l o ! 262 | 100 480 100 760 0.206
% KN KR B F 1111 Is " " “ " 95 0.220
elnl=lal 2 22111 11 " “ “ " 590 0.24)
ef~f= -1 3 322111 1 10 » B & ” s24 0.229
el=j~1-] > 332211 |8 “ " " “ a3 0.212

i
Denelty
Mseterial
nind

Styrofoam 4
Polyurethane ]
Mylar .4
Observations
1. Trend of the sequence is from a triangle to a rectangle followed

by an exponential curve.

. 2

2. Peak pressures decrease monotonically from about 750 1b/in

to 500 1b/in?,
3. Impulses remain fairly steady and are about one -half of the impulses

in Figs. 2.5 to 2.8 (only about half the length of gas used).

L 3




FIG. 2.9 KROD-GAGE RZCORDS
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FIG. 2.10 EXPERIMENTAL ARRANGEMENT — SHOCK TUBE
OF RECTANGULAR CROSS SECTION

2. Photodiode Experiments

In order to assess the effect on the pulses of the mobility of the
target, pulses from the fixed target configurations associated with
Figs. 2.8(d) and 2.9(e) were applied to ‘ree disks placed against the
end on the shock tube (Fig. 2.11). It is reasonable to suppose that,
at least in the carly stages of the application of the pressure, the .
fixed target pressure will be modified most if the plate is compietely

free to move away. .

A

20




EXRMPRR LIGHT SOURCE

& D3 |
f|\'
LUCITE LADDER
OXYACETYLENE —
4
sTvnormu/
MYLAR DISKS AR WD / I
POLYURETHANE FOAM (COATED BLACK) E
PHOTO ~DIODE
GA-4940- 0!

FIG. 2.11 DIAGRAM OF PHOTODIODE SETUP (during motior)

The technigue consists of obtaining an x,t plot for the disk of
sufficient accuracy to allow the second derivative X, or the accelera-
tion, to be computed accurately. Then, by Newton's law p(t) = mx
it is possible to construct the pressure-time relation. Also, for a pulse
of duration T , it is possible to find the iir.pulse since I(T) = m;t(T) .

A diagram of the experimental setup to provide an accurate x,t
plot for the disk is shown in Fig. 2. 11, A lucite "ladder'" in a light
magnesium frame is attached to the center of the disk by means of a
ball joint (Fig. 2. 12) and, as the disk r.oves, the ladder holder is
guided along teflon-lined tracks (Figs. 2.12, 2.13 and 2, 14). The
strip of lucite has 50 or 100 lines per inch equally spaced onone surface,
the lines being perpendicular to the direction of motion and having a
thickness equal to the space between themn. On one side of the ladder
is located a powerful light source while on the opposite side, perpen-
dicular to the ladder, is a lucite rod. The curved surface of the rod
is coated black to exclude light and on the end next to the ladder is an

array of lines with the same spacing and farallel to those on the ladder.

21




ﬂ. FIG. 2.13 EXPERIMENTAL ARRANGEMENT FOR PHOTODIODE MEASUREMENTS
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FIG. 2.14 EXPERIMENTAL ARRANGEMENT FOR PHOTODIODE MEASUREMENTS

Each line is completely opaque so that when they are exactly opposite
each other the maximum amount of light is transmitted along the

lucite rod; almost complete interference or darkness prevails when
the lines are exactly opposite the spaces. As the ladder moves across
the end of the rod, the intensity of light traveling down the rod varies
and is converted into a voltage variaticn by means of a photodiode
located at the other end. The voltage variation is recorded on oscillo-

scopes.

Figures 2. 15(a) and (b) are oscillograms showing the voltage
variation when a ladder having 50 lines per inch is attached to a
1/2-inch-thick aluminum disk which receives a pulse from the con-
figuration associated with the recond in Fig. 2.9(e). The sweep rate
is 20 pusec per cm and by using appropriate delays in two dual beam
oscilloscopes a total time coverage of 800 usec is achieved. The

distance traveled by the disk during the time interval between crests

23




FIG. 2.15 PHOTODIODE RECORDS EXPERIME ¢TAL CONFIGURATION ASSOCIATED
WITH FIG. 2.9(e) (Lodder has 50 lines/inch)

or troughs is 0. 02 inch. Thus an (x,t) plot for the disk is obtained
and is shown in Fig. 2. 16 as the curve labelled ""experiment."
Additional point3 can be obtained by using the trace between the crests
and troughs. In particular, the upper trace in Fig. 2. 15(a) gives the

initial motion of the disk.

As stated earlier the second derivative of the (x, t) plot gives
the pressure. It was found that the method gave the initial part of
the pressure-time diagram satisfactorily, but around the peak pressure
and at later times it appears that the pressure i3 varying quite rapidly
and this demands greater accuracy. However, the ultimate accuracy

of the method has not been reached.

As an inverse method one can take the pressure pulse acting

on the fixed target (rod-gage record), idealize it, and modify it so that
its (x,t) plot falls on top of the experimental (x, t) curve. In Fig. 2. 16,
curves A and B are (x,t) plots from idealized pulses having the shapes
shown in the figure, impulses and peak pressures equzl to those of the
fixed target pulse, and a ramp pressure rise taking 100 psec to reach
peak pressure. Suc' pulse shapes could form a reasonable starting
point, especially for €arly times where the mobility of the target has

least effect.




P,

FIG. 2.16 (x,1) PLOTS FOR FREE DISK-
CONFIGURATION OF FIG. 2.9(e)

| |
|
|

One point worthy of notice is that the impulse imparted to the
free disk is considerably less than that on a fixed target. This can be
seen in Fig. 2. 16 by comparing the f‘inal slope of the curves A and B
with the final average slope of the experimental curve. From two
Photodiode experiments with the configuration of Fig. 2.8(d) the final
velocities correspo:.ded to impulses of 0.208 and 0.219 lb-tu:c/in2 for
a fixed target impulse of 0,363 Ib -sec/in?'. From three photodiode
experiments with the configuration of Fig. 2, 9(e) the impulses were
0.117 0.119, and 0. 120 lb-sec/inz corresponding to the fixed-target
impulse of 0.209 lb-aec/inz. The average ratios of free-target to
fixed-target impulses are respectively 0.59 and 0. 57 which represents

a considerable reduction of impulse due to full motility of the target.

3. Mathematical Model

Each assemblage of layered media used to sha  pulses has been
rcparded as and is called a spring-mass system, whereas it is actu. 'y
a somewhat more complicated system. However, a mathematical rnodel
was constructed consisting of masses and linear or cubic springs which
gives a reasonable account of the behavior of the layered media, at least
for the few cases studied. The description of and results from the
mathematical model are contained in Section VII. The (x, t) plot of a
freely supported disk used in the photodiode experiment with the con-

figuration of Fig. l.9(e) is shown in Fig. 2. 16.

25
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4. Structural Experiments

Some experinents were performed in each of which a central
length of a clamped beam was subjected to loading by placing the beam
against the target end of the shock tube of rectangular cross section.
The pulse applied to each beam was taken as that measured against a
fixed target (rod-gage record) for the sam? experimental configuration.
As was mentioned above at thc end of Subsection 1, the pulses obtained
were neither sufficiently reproducible nor uniform. In epite of this a
few beame of 6061-T6 aluminum were loade to demonstrate the
feasibility of the structural experiments. The results, which can only
be regarded as preliminary, indicate that the ratio of the theoretical
to experimental final central deflections range from about 3 to 4 for
A values (ratio of r.~ak pressureto siatic collapse pressure) ranging
from about 3 to 12, the theoretical deflection being that from a rec-
tangular pulse. In conclusion it should be stated that these experiments

1 could almost certainly be improved by using wider beams and hence a
F . wider shock tube. This remark is based on the good reproducibility
' and uniformity of pressure distribution obtained when the shock tube is

cylindrical. Experiments on plates are described at the ends of Sections

V and VI

5. Large Surface Loading

For the loading of larger structural surfaces the shock-tube units,
which can have any reasonable cross section, can be placed side by
side to cover the loading area. A number of unita are e:specially re-
quired when the loadirg surface is curved to ensure that the wave
etrikes the surface at right angles and to ensure that the layers are
not buckled or crumpled by being forced to occupy a smaller area.
Figure 2. 17 shows 2a section through a suggested two-unit assembly of
shock tubes for applying a load to a cylindrical surface. Unlike the single

units the assembly shown would involve a detonation wave striking the

26




styrofoam piston obliquely, tie front traveling .long the top of the
styrofoam at a velocity higher than the detonation velocity, The
pressure pulse for this setup would first be obtained from rod gages

and possibly photodiode experiments before being applied to the

structure,

It should be possible to approximate a loading which varies not
only with time but with position on the loaded surface by using an
assemblage of shock tubes each with its own spring-mass configuration.

A cosine distribution of loading around one-half of a cylinder appcars

quite feasible,

GAS INLET HOSE

DETOMATING
MYLAR COVERS -

FIG. 2.17 SECTION OF A TWO UNIT
ASSEMBLY OF SHOCK TUBES
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SECTION 1III

CLAMPED BEAM

1. Introduction

The problem treated here is the response of a clamped beam of
rigid-plastic material subjected along a central portion of its span to
a pressure which is constant along the bearn but varying with time in
the form of a blast pulse. Figure 3.1 illustrates the problem. A

blast pulse is here defined as a pulse with a time-dependent pressure

satisfying X
tp(t) < fp('r)d'r (3.1)
o
p(t)
/]
4 %
/ ,é
4 7
2 et %
K L P 3
2 .
]
— i 1%
€ &
GA-49448 -

FIG. 3.1 CLAMPED BEAM PROBLEM

The main characteristics of such a pulse are the instantaneous

rise to peak pressure and a decay in accordance with condition (3.1).

When the moment-curvature relation for a beam is approximated

by that correspond{ng to a beam made of a rigid-ideally plastic material,
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no deformations and hence no curvature is possible until the bending
moimert at a cross section is equal to the fully plastic moment, where-
upon the curvature becomes unbounded. This property determines

failure in rigid-plastic structures by means of mechanisms,

In the Semiannual Technical Report No. | it was shown that the
clamped beam can fail in one of four types of mechanisms. The param-
eters determining the initial mechanism are the peak pressure of the
pulse and the loaded length of the beam. In the following section the
equations of motion an¢' their solutions are presented for each mecha-
nism. Two of these mechanisms are the subject of a paper by M.
Conroy [ 3.1]. Although the work primarily concerns veams of infinite
length, its application for a clamped beam can easily be made.

Section 11l considers the deformations caused by three types "
of blast pulses: rectangular, triangular and exponential. A derivation
of formulas for the deformed shape of the beam is presented only for
the case of a rectangular pulse. Formulas for the midspan deflections
are contained in Appendix A. For the rectangular pulse only, formulas
for the deformed shape are contained in Appendix B. The variation of
the midspan deflection with peak pressure, impulse and loaded length
for all three pulses are shown in Figs. 3.3to0 3,11,

2. Mechanisms of Deformation
(a) Mechanism |

Peak pressures, Py which are slightly above the static
collapse pressure P, » cause small inertia forces and the beam deforms
in the static collapse mechanism. The cross sections of the beam at
the supports and at midspan carry a fully plastic moment, M,
and the resulting motion of each half-beam is a rotation as a rigid body
about the supports. The corresponding velocity distribution along a
half-beam , 0 s x <, is

yix,t) = wlt) (L -x) (3.2)
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where w(t) is the angular velocity about the ends. The equatiun of ¢

motion can readily be written in the form

6M p
&:-92_'(52--1) (3. 3)
mi 8

where P is the static collapse pressure given by

4M
Py = =3 (3.4)
L8 @2 -8.)

and m is the mass per =2nit length of beam.

The equilibrium equation for a length x of the half-beam
(0 <x=x1) is

x X
M o= M -f f(p-m';r)dx’dx (3.5)
o o
When y, found by differentiating (3.2) and using the

result (3.3) for w, is substituted in (3.5) and the integration performed,

(3.5) provides the following relations for the Fending moment

M 2 3 2
= = 1+ £ ¢ -g)-_P_(_jzﬁ) 0s€e ¢
Mo Py Pe zgo-go o
(3.6)
4-%
M L (3¢ _ g3y . 2P e
m—o l+ P'(3: g) p' (T~.§o) :°S§$l

The corditions which ensure no violation of the yield

condition, | M| < M, are now stated.

From expressions (3. 6) it can be shown that a necessary

and sufficient condition for a maximum moment at midspan is

Lo - - gosl-l/,/T=.433
Pg ‘o o (3.7)
P o 3%R-%) 2o 2L IVE

Pg ;ol '301'z




Similarly a minimum moment will occur at the support,
that is at £=x/¢ =1, if

2-¢
P ]
ps 53(2-.—33:) €052/3

‘:3. ’;)
-2- -g >3 2
< 3 3;0- go /3

Tae conditions (3.7) and (3. 8) are also sufficient for the
moment to decrease monotonically for 0 < € < §o and go $E sl

respectively.

The loading range for this mechanism represented ty

A= pm/pa can then be written as

1 s\ Sll
where -
2-%
3 (m*;:) €y ¢ 1/2
A = < (3.9)
3t (2-¢8 )
[0} [0}
T2 % 2 12 ,
.

Mechanism 1 applies to any type of loading whereas the

other three mechamisms require the restriction (3.1) of a blast load.
(b) Mechanis. 4a g, 2 1/2

For the case wuere the lrading acts over more than half
the span and )\ > Xy the yield condition is violated in the neighborhood
of £2=0. This suggests a mechanism of deformation which retains
the plastic hinges at the supports but has two plastic hinges which
travel towards the center. The decreasing central section of the beam

will translat? downward while the outrr portions rotate as rigid bodies




about the supports. After the moving hinges meet at the center the

beam will deform according to mechanism 1.

Denoting the position of the moving hinge by xo(t) » the

velocity distribution meeting the above description is

. yo(t) 0 £ x < X
y(x, t) =

. x-

yolt) ("o'L) X, $x s¢

The equations of motion for the half beam are

my_ = p
Fwu-x)d = Ba- X)L =2 - x_) - 2M_

where w = ;ro/(L = xo) is the angular velocity of the outer portions

of the beam.

(3.10)

(3.11)

(3. 12)

Integrating (3. 11) and (3. 12), using the initial conditions

y(x, 0) = ;r(x, 0) = 0 yields the following two equations for (8 and x

o

. !
Yo =f I(t)dt (3. 13)
o]
12M t
(-x )% = e 3a-1)° (3. 14)
where t
I(t) =fp(v)dv
o]

By substituting the velocity field (3. 10) in the moment

expression (3.5) and carrying cut the integration the moment distri-

bution is found to be
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rM 0 £x < x
o o
VS YR wexen os
0 o o o %X ¥a - 13)
mw
1 Mo-g(a-xo)(Zx-a-xo)-Tcp a sx s |

where

3 2
0= X «3x"¢ - 3xx0 + 6xxo(,+ ng = 3x§l,

Using (3. 15) it can be shown that the yield condition will
not be violated so long as the pulse obeys the condition (3.1) and

A= pm/p’ is bounded by the values ), and X, i that is

| 1
oL
|
)‘l L W 4 )\2
where
36 (2-¢8)
)\Z = ° g ;0 2 1/2
(1-g,)
and X is given by (3.9).

(¢) Mechanism 2b ;G < 1/2

When the loaded length is less than the half span and

x> )‘l the yield condition is violated at the supports. A mechanism
of deformation is thus considered which)ml a plastic hinge at mid-
span and two hinges which travel towards the supports. The only
motion is that of the inner portion of the half beam, 0 <x < X)
which rotates as a rigid body about the moving hinge at x = xl(t) .
After the moving hinges reach the supports the structure will deform

according to mechanism 1.
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In accordince with the above motion, the velocity distri-

bution is

. yom(l-%> 0 sx £ x,
Y(xit) = (3.17)

0 xlsxs{.

where ).'o is the velocity at the center of the beam.

The momentum equations for the half-beam are

d .
m = (xlyoy = 2ap (3.18)
m = (x y,) = 3a%p + 12M, (3. 19)

With the initial conditions of zero displacement and velocity
the solution of (3, 18) and (3. 19) is

. 2.2
y = 4a I(t:)2 (3. 20)
lZMomt + 3a "mli(t)
6M t
_ 3a 0
17t am Fa

This mechanism was investigated in [3.1] and it was found
that the yield condition will not be violated ro long as (3. 1) is satisfied

and
12M
léil £ —0 (3.22)
a
2
"
In (3.22), I(t)/t —» P,, a8 t—> 0, sothat P S l.-Mo/a :
Hence
Ay ShSh,
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2-¢

= ) -~
Ay = 3¢ £ ) g 1/2 (3.23)

and )\ 1 is given by (3.9).

(d) Mechanism 3

For sufficiently high pressures such that } > Xz ’
mechanism 2 violates the yield condition either at the supports (if

e i 1/2) or at mid-span (if €, 2 1/2). This suggests a mechanism
of deformation in which moving plastic hinges are formed on toth
sides of the loading boundary, x =a . The hinge at x =x_ and under
the loaded segment of the beam moves towards midspan while the
other at x = x, moves towards the support. If the support receives
the approaching hinge first, the structure enters mechanism 2a,
whereas if the mid-span receives the other approaching hinge first,

the structure eaters mechanism 2b.

The motion of the half beam is as follows: the inner
segment, 0 <x < X, translates downward while the midsection,
X, $X S X, rotates about the outer hinge, x, . The velocity field

can therefore be written as

Yo 0 <x S X
. . X -X
y(x, t) = { yo(x -x) X, $ X $x) (3.24)
[o] ’
L 0 3 < x sS4

The momentum equations for the half-beam are

t 12
fap('r)d'r = fm&vdx
o )
and ¢ 2 t
f(ZMo + piz-)d'r = fmx)"dx :
o : o
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with the solution

t -
my = fI(T)dT (3.25)
o
12ZM t
_ o ,1/2
x, = a- (_I—) (3.26)
12M t
1/2
X, = at (-—r_°_) / (3.27)
In [ 3.1] it is shown that the yield condition will not be
violated if the lecading is a blast pulse satisfying (3. 1) and
2.8
- (3.28)
x 2 8% -1,) g, 2 1/2
. 2
(1-¢,)

To findi the initiai locations of X, and x, set I= Pt
in (3.26) and (3.27) which is approximately true for smallt. Then

]

%,(0) = x_+(12M_/p_)/2

x,(0) X, - (lZMo/pm)I/Z

Hence as )‘m or p_ increases indefinitely the initial

rs positions of x, and x, move closer to X, coinciding with X,

2
for an ideal impulse,

(e) Summary of Mechanisms

The results obtained for the modes of failure giving

dependence upon dimensio..less peak pressure and loaded iength are
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shown in Fig. 3.2. For convenience, A, and A, are given below.

(3¢ 2-2 )3t @2-¢,) - 2] 12 s s )
A <

32-5,)/[32-¢,) - 4] 0<g_ s 1/2

r 2

36,02-8)/1-¢ ) 1/2 s s 1
A * ¢

;3(2'50)% 0<z =1/2

Once a blast pulse is known its peak pressure and the loaded
length of beam can be plotted on Fig. 3.2 to give the initial mechanism.
Knowing this, ilie analysis can proceed directly towards obtaining

permanent deformations.

3. Permanent Deformations

(a)  Introduction

In this Section the permanent deformations are considered
for three blast pulses: rectangular, triangular and exponential. These
particular pulses need only two parameters for their complete
description. The parameters chosen are the peak pressure, P,

and the total impulse per unit beam length, I, , defined as

Il =J p(t)dt

(o]

Since the method of solution is identical for all three
loadings, expressions are derived for the final deformed shape due to
a rectangular pulse causing initial deformation by mechanism 2a. For
the other initial mechanisms only the results are given and they may be
found in Appendix B. The central deflection formulas for all three
pulses are contained in Appendix A,
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(b) Rectangular Pulse

The loading under consideration is giver by
P 0sts to
0 t >t
where
t, = Il/pm
A special feature associated with a rectangular pulse is
that all plastic hinges are stationary while it is acting on the beam.

This simplifies the analysis since the quantity I(t), appearing in the

equations of Secticr II1-2, canbe replaced by the constant Il .

The derivation of expressions for the final deformed shape
is confined, for simplicity, to the initial mechanism 2a. For the

remaj.ing initial mechanisms the expressions are listed in Appendix B.

Mechanism 2a : xl<xsx l/ngo a1

2

The expressions for the final shape of the half beam will
be quite different on either side of the initial hinge position x = x (0)
for two reasons. Firstly, a discentinuity of slope at x = x (0) is
created during phase ]l because a rectangular pulse causes the hinge
to remain stationary. Secondly, during phase 2 the hinge initially at
X = xo(O) travels through the region 0 s x < xo(O) toward the center

of the beam.

During phase 1, the equation of motion in the region
0 <x sx (0) is my P,,, Which upon integrating twice between t = 0
and t —to I/pm yielda

y(x, to) = I'l‘/Zmpm 0 < x < xo(O) (3.29)
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The portion of beam xo(O) £ X < { rotates about the support as a

rigid body. Hence
ybut) = (/2mp Me-x)/[e-x (O] x(0) sx sz  (3.30)

During phase 2 let the time be 7 when the moving hinge
reaches & point in the segment 0 < x < xo(O) . The point moves at
a constant velocity I/m during the time 1 =t after which it moves
as part of the rigid portion rotating about the support and 1or a time
t, =Tt denoting the end of phase 2, Now the equations of motion
for the parts on cithor side of x = X, are y = I/m and m({,-x ) w/3 =
-2M_ from which xo = «6M o/ 1L -x o) and (l, x) -[1-x (0)] =
6M (1’ =t,)/I. The velocity of pointl on the rigid rotating portion is
y= I({, x)/m({, xo) Hence the deflections which occur during phase 2

‘are, by integration of velocities,

I I 1
Y(x.tl) -y(x,to) = Elh'to)"'rli(""‘ d-t
‘—['r-t)+(l.-x)f ]
X olt=x.)
2

= I;;' [((,-x)2 - L-xo(O) + x({,-:»c)]/é»mM0

0 < x Sxo(O) (3.31)

and t

Il ld o dx0
V(X.tl)-y(x.to) = Tn(‘"")f . --4(. x)([

xolL=x )

xfxo(m C{Lex)/bmM_ x (0)sx st (3.32)
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Figures 3.4(a) to (d) show the same curves as those of Figs.
3.3(a) to (c) only they have been regrouped. For a given loaded length
the A\ versus v curve for each of the three types of pulse are shown
side by side. Again regarding the impulse as the same for each type
of pulse, Figs. 3.4(a) to (d) show that for a given value of \ the
central deflections are greatest when the pulse shape i, rectangular
and lcast when it is exponential. For low values of A\ the spread of
6 is quite large whereas, as expected, for high values of \ the spread
is small. Tbe latter observation is of course due to each pulse tending

toward an ideal impulse.

Figures 3.5(a) to (c) give the same ‘nformation as that in
Figs. 3.3(a) to (c) but in a form convenient for studying the variation
of X\ with the impulse .Tl .+ They are essentizlly pressure-impulse
diagrams (p-I diagrams),each curve showing how the pressure and
impulse must vary to achieve a given central deflection 6 . It can
be seen that above certain values of \ the peak pressure cau be varied
significantly with very little change of impulse required to maintain 6

(see Conclusion 4),

Figures 3. 6(a) to (c) show the same curves as those of Figs. 3.5(a)
to (b) only they are regrouped according to loaded length so that the
effect of the pulse shape may be seen more clearly. For any fized
peak pressure, or N\ value, the impulse required to produce a given
6 is least when the pulse is rectangular and greatest when it is expo-
nential. The differences are most pronounced when )\ is low, eapecially
in the range 1 <\ < 2,

Figures 3. 7(a) to (c) are essentially another form of pressure -
impulse diagram (p-I diagram). The impulse Il has been rende-ed
dimensionless by dividing by Ii » which is the ideal impulse required
to give the same central deflection as Il . Consequently all the curves
have a vertical asymptote through Il/Ii = 1. For any given central
deflection & the curves show the relationship between \ and Il“i ‘

The curves are of course, similar to those of Figs. 3.5(2) to (c).
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Figures 3.8(a) to (c) show the same curves as those in Figs.
3.7(a) to (c) but they are regrouped according to loaded length to
bring out the effect of the pulse shapes. They are similar to those
of Figs. 3. 6(a) to (c).

Figure 3.9 shows the relationship between the peak pressure
and the central deflection by means of the parameters p and v .
This is an alternate way of representing the information in Figs. 3. 3(a)

to (c) to give the peak prezssure directly instead of from \ = pm/p8 3

Figures 3.10(a) to (c) show the relationship between the central
deflection & and the loaded length a by means of the parameters v
and §o with each curve representing a constant peak pressure charac-
terized by the parameter p . A vertical line drawn through some
chosen value of go intersects the p curve for the peak pressure of
interest. Then, for the impulse of interest the central deflection can
Le calculated from the ordinate value of v. Figures 3.10 can there-
fore be regarded as design curves for clamped beams of rigid-plastic
material. Where the p curves intersect the horizontal axis v=0
gives an idea of the loaded length below which no deflection occurs.

For example, if p = 10 more than one -fifth of the span must be loaded
to give a permanent central deflection. Now in this region elastic effects
become important and so it is probable that one -fifth is a lower bound

of the fraction of span that must be loaded to give a permanent deflection .
If a beam is subjected to a pulse with a shape that can be approximated
by a rectangular, triangular or exponential shape of the same impulse
and peak pressure then, for each impulse and central deflection, v is
determined. A horizontal line through this value of v cuts @ curves
which give the relationship between the peak pressure and loacded length
to maintain the central deflection (regard ¢ curves as contours). The
loaded length must always be greater than the value at the intersection

of the horizontal line through Vv with the curve p = @ which represents

the ideal impulse case.
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Figure 3,11 shows the curves p = 20 for each type of pulse
plotted in the v, go plane and shows, for a given ;o » how the shape
effects the {inal deflection when the peak pressure and impulse remain

fixed.
5. Conclusions

From the information given in Figs. 3.3 to 3. 11 the following

conclusions can be drawn.

(1) For a given impulse I; and loaded length £, , the central
deflection increases monotonically with pressure Pm (or \),
and becomes » maximum when the pressure is infinite, that
is, when the given impulse is applied as an ideal impulse,
This can be seen best in Figs. 3.5 to 3.8,

(2) For a given impulse I, , Table 3.1 shows approximate
values of A\, corresponding to pulse shape and loaded
length €5, above which over 80 percent of the maximum
central deflection (the deflection &; when I, is ideal,
i,e., 1] =1;)is obtained. Below the listed values of \
the decreass of 6 with A\ is quite pronounced. This
behavior can be observed best in Figs. 3.3 and 3.4, In
Takle 3.1 scme lower bound values of. u are also listed.

Table 3.1

LOWER BOUNDS FOR X AND @ GIVING 6> 0.8 6i

Rectangle | Triangle |Exponential
g
9 " 1 N
1/4 9 |85 11 ]100 15 | 140
1/2 5126 6 | 32 9 | 48
3/4| 4|17 5 1 21 8 34
1 4 (16 51 20 8 32

(3) The effec’ of pulse shapes on the midspan deflection &
when the peak pressure p,, , impulse I, and the loaded
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(4)

length ratio £ _ are given can be seen in Figs. 3.4 and 3. 9.

Rectangular p\ﬂleu cause the greatest midspan deflection
and the exponential pulses cause the least.

For a given midspan deflection &, as the pressure ratio

A decreases from infinity of some value )\, the deflection

% is maintained with less than a 10 percent increase in
impulse over the ideal impulse (1 <Ij < 1.1 for A\, <\ < ).
Values of \[, obtainable from Fig. 3.7 or 3.8 are shown

in Table 3.2 for the three types of pulses and for £, = 1/4,
1/2, and 1. For values of A below A; a significant
increase in impulse is required to maintain &, especially

in the range 1 <\ <2,

Table 3.2

LOWER BOUND: OF A REQUIRING
11/1i < 1.1 TO MAINTAIN §

N
go
Rectangle | Triangle | Exponential
1/4 8 11 18
1/2 1 7 10
) S 4 6 9

[=

20
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FIG. 3.5(b) PRESSURE RATIO vs. IMPULSE: TRIANGULAR PULSE
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FIG. 3.6(b)
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NOMENCLATURE 3

load half length

impulse at time t < t,

H’-ﬂp
P

total impulse

ideal impulse

half span

mass per unit length

bending moment

X3 <

fully plastic moment

o}

pressure

peak pressure of pulse

3

static collapse pressure
pm/Il
time

¢ o @ v v "

Il/pm , pulse duration

o}

tot phase change times

distance coordinate

E

(o]
»®
p—

positions of plastic hinges

deflection

]
o

central deflection
final central deflection
final central deflection due to Ii
pm/p'
mechanism bounds on \
2
me /Mf ,
6Mom/IlL
x/¢
alt

time variable

-e

>

p—
o~

E-lod‘d‘C'FV?O'o

angular velocity
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SECTION 1V

SIMPLY SUPPORTED RIGID-PLASTIC PLATES
UNDER BLAST LOADING

l. Introduction

A simply supported circular plate of rigid-plastic material
subjected to a blast load of low peak pressure acting on a central
circular ar-a is analyzed in tkis section (Fig. 4.1). The pressure
is assumed to rise instantaneously to its peak pressure P, and there-
after to decay monotonically. Only one deformation mechanism is
investigated, namely, that corresponding to static collapse. Conse-
quently, only the response of the plate to low peak pressures is

presented below.

Yielding is assumed to occur in bending according to the Tresca
yield condition and the associated flow rule (Fig. 4.2) [4.1]), membrane
action being neglected. In Fig. 4.2, M and Me are the radial and
circumferential components of bending moment. ;tr and ;w.e are the

corresponding components of rate of curvature. Positive bending

moments and shear force Q are shown in Fig. 4.3.

o
! e | ta
| F
W ¢ M,
b&,
0, "] R
e
' PA-4040-7 0A-4940-9
FIG. 4.1 CIRCULAR PLATE FIG. 4.2 TRESCA YIELD
PROBLEM HEXAGON
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FIG. 4.3 PLATE ELEMENT

2. Deformation Under Low Pealt Pre: sures

The deformation mechanism is assumed that of static collapse,

namely,

w(r,t) = wW(t)(l-r/R) (4. 1)
where R is the plate radius. Deflection formula (4. 1) describes a
deformation in which, at any instant, the plate is a skallow cone.

According to (4. 1) the rates of curvature are

xrz’-w"_ =0 and xe

The flow rule as described by Fig. 4.2 and results (4. 2) dictate
that the plate is in the plastic regime AB. In fact, at the plate center
MB = Mr = Mo which corresponds to the regime A; at the support Mr =0
which corresponds to regime B, Thus the bending moments corres-
ponding to Eq. (4.2) are

M

= -{vr/r = W/Rr (4.2)

B:Mo and O‘Mr‘Mo (4. 3)

where Mo is the fully plastic moment per unit length of cross section.

With the aid of }ig. 4.1 the equation of motion can be derived in

the form

r
M, - ga;-(mr) =f(p-mw)rdr (4. 4)
(o]

where m is the mase per unit area of plate.




Integrating Eq. (4.4) using formulas (4.1) and (4. 3) yields

W= 1zM_(\ - 1)/mR% (4.5)

In Eq. (4.5), \= p/p|l where p_ is the pressure required to
cause static collapse and is [ 4.2] ‘

p, = 6M°/Rzaz (3 -2a) (4. 6)

o being the ratio a/R.

Now Eq. (4.5) is analogous to Eq. (3.3) for the clamped beam
subjected to low pressures. Thus, Section 1I11-2(1) can be taken nver

to complete the discussion on the simply supported plate.

By successive integrations of (4.5), the velocity and displacement

of the plate center are

. 2
W = lZMO(I-I')/p'mR (4. 7)
2
w = lZMo(A-A’)/p'mR (4. 8)
where

t
I(t) =fp(1)d1 » L) = pt

o

2

A =f1(‘r)d'r " A' = pst /2

o

Motion ceases when W(t) = 0, at time t = tf , ceay. Then from
(4. 7) te is determined by I(tf) = Pgte - Consequently the maximum
deflection is W(tf) , found by substituting t = ty in (4. 8).
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For each a, the peak load (1epres:=nted nondimensionally as
ko = pm/p.) has an upper bound ), such that when it is exceeded,
the mechaniem (4. 1) does not apply because the yield condition is
violated. Determining xl so thut (4. 3) is satisfied leads to the

following range for b corresronding to mechanism (4. 1)

1s)_s), = 262 3-20)/[20°(3-20)-1] - 1/2 sq <1
(4. 9)

Lsx sy = (3 - 2a)/(3 - 4a) dsasl/2

The curves (4. 9) are plotted in Fig. 4.4.

S0

4.)
3.63-==4

30

20

0o 0. 0.3 063 10

aro/R sA-4968-10

FIG. 4.4 DEFORMATION MECHANISM DIAGRAM

For peak pressures of blast pulses such that the value of \ lies
in the range ! <\ < )‘l the permanent central deflection is given by
- 2
W, = IZMO(Af-AB)/p’mR (4.10)
where W, = W(tf) ; Af = A(tf). and ty = I(tf)/p. = If/ps . This result
is exactly analogous to entire deformation by mechanism 1 for clamped

beams (Section I{I).
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NOMENCLATURE

radius of loading

t
‘l‘ I(1)dt

)
A(t,)

p.tilz

impulse

I(tf)

Pgt

mass per unit area
components of moment
fully plastic moment
pressure

peak pressure

static collapse pressure
radial component

radius of plate

time

time when motion ceases
deflection

central deflection

final central deflection
a/R

circumferential coordinate

components of curvature

P/P,

an upper bound of \

P/ Pg
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SECTION V
CLAMPED RIGID-PLASTIC PLATES UNDER BLAST LOADING

A theoretical study is made of clamped circular plates of rigid-
plastic material subjected to blast loading uniformly distributed over
the surface. The dependence of the permanent central deflection on
pressure and impulse is obtained when the blast pulse is taken as a
rectangular pulse. Experiments are described and the permanent

central Jdefiections obtained are correlated with the theoretical pre-

dictions.
1. Introduction

The problem treated is the resporse of a clamped circular plate
subjected to a suddenly applied pressure uniformly distributed over
the whole of one side of the plate. The pressure is assumed high
enough or held on the plate long enough to produce moderately large
plastic deformations. Although the governing equations are derived
for a general pressure-time relationship they are solved for the
simplest case; that of a pressure which is held constant for a time and
then suddenly released (a rectangular pulse). It is the variation of the
permanent central deflection with pressure and impulse (area under
pressure-time curve) that constitutes the principal result of interest.
To simplify the analysis the plate material is assumed to be rigid-
perfectly plastic in behavior obeying the Tresca yield condition and the
associated flow rule. Only the bending action of the plate is taken into

account.

The response of a clamped circular rigid-plastic plate to a
uniformly distributed ideal impulse was found by Wang and Hopkins (5.1].
Their method of solution, establisheqd continuity and jump conditions,
and nomenclature are employed here. Wang [5.2] obtained the response
to an ideal impulse for simply supported plates. Hopkins and Prager.
[5.3] solved the problem similar to one presented here but for simply
supported plates and their results ace used later to issess the effect

of the boundary conditions.
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2. Mechanisms of Deformation

A blast pulse may be idealized to that shown in Fig. 5.1 with an
instantaneous rise to the peak pressure P, followed by a continuous
monotonic decay. This property will be used later. If the peak pressure
is only slightly greater than the static collapse pressure P, it is reason-
able to expect the dynamic mode of collapse to be similar because the

inertia forces are still small. In [5.4] it is shown that the static collapse

pressure is

P, = 6M°/rf (5.1)

where M, is the fully plastic moment per unit length and r. is a

certain radius determined by the equation

5+ ta(R/r,)? = 3(R/r )} (5. 2)

where R is the radius of the plate. In fact, the solution of (5.2) is
r'/R = 0,73,

Figure 5.2 shows the mechanism of deformation called mechanism 1,
corresponding to peak pressures in excess of P, but below a pressure P,
to be determined. The radius rl(t) replaces ro - At the plate center
the plastic re.gime is A in Fig. 5.3 where M = N = M,. M and N
being the radial and circumferential components of bending moment

(positive moments causing tension on the underside of the plate).

o
Pa
Py
‘ - A aB B BC €
0 '
0A-d94q - 02 A-4044- 4
FIG. 5.1 IDEALIZED BLAST PULSE FIG. 5.2 MECHANISM 1

72




[

At r = rl(t) and r = R the regimes are B and C while in the regions
0 <r s rl(t) and rl(t) S r < R they are AB and BC. A velocity
field which satisfies the flow rule, boundary conditions and the appro-

priate continuity and discontinuity conditions [5.1] is

V(l-Or/rl) 0 sr < rl(t)
w, = (5. 3)
VoinR/r rl(t) sr sR
with
1/0 = tnR/r) +1 (5. 4)

In (5.3), w is the plate deflection, V is the velocity of the plate center
and the subscript t denotes partial differentiation. The initial condition
of the plate at rest may be expressed by V() =0,

The upper bound Py of the peak pressure P is that pressure
which causes at the plate center an inflection point in the bending
moment diagram for the radial component, that is_ BZM/Brz =0 at
r = 0. The inequality Pm <P, Prevents violation of the yield condition
at the plate center. This suggests that whenever the peak pressure
exceeds p, a central region 0 sr s ro(t) < rl(t) of the plate acquires
a uniform velocity. This mechanism, called mechanism 2, is shown in

Fig. 5.4 with the plastic regimes indicated and has the following velocity
field [5. 1]

\' 0sr < ro(t)
w, = V(l-o(r-ro)/rl) ro(t) Sr s rl(t) (5.5)
voin(R/r) T, (t) *rsR
Hﬁ
o 1 .
"ﬂ
s - o
-Mg Mg : { .
L A fas; Bc
A A B ¢
Gh-dBan-ay SA-4940-48
FIG. 5.3 TRESCA YIELD HEXAGON FIG. 5.4 MECHANISM 2
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1/0 = LnR/r1+(l-ro/r1) (5. 6)

By taking the blast pulse in the form of Fig. 5 1 the value of
ro(t) is a maximum at time t = 0 and thereafter decreases to zero.
D\iring the remaining time the plate deforms in accordance with

mechanism 1.

2, Governing Equations

Independent of mechanisms the equation of motion is

r
N - (rM)r = f (p - mwtt)rdr (5.7)
(o]
A subscript r indicates partial differentiation with respect to r.

(1) Mechanism 2

When the peak pressure is large enough to cause deforma-
tion by mechanism 2 (pm > pl) the acceleratio. to be substituted in
(5. 7) is obtained by differentiating (5.5) with respect to time. The
circumferential component of the bending moment N is eliminated
by using the yield condition (Fig. 5.3). Due to the three properties
M=N=0in O<r ST M(rl,t)=o, and M(R't)='Mo'
carrying out the integration in (5. 7) provides the following three

equations.

? 2 -‘\ 2 ¢ Z Z
V/(Etn) nl28(3-3n+n°) + n(6381n +3n°)] - VE 0 [8(6-8nt3n )+ n(1-n)(4-3n)]
2(8,-8)

2
\e ;‘/Z (5. 8)

n(3-3n+nl) - 1] e25e +n)?
(5.9)

Vn'rel2e(3-2n) +n(4-3n)] = [he

v+ nil3e25-3 - 2e(3-3n 430 ve'l 3e25.3.2¢ {3-n‘°'(1-n )3-2n )}

2 2 2
& Zgz (3-6n+6n -Zn3ﬂ-Vn'[3e g-3 -2¢ (3 -3-nz+ zn3) = 6§2 (1-0°]

2(¢_-£)
= [3re * (e251yz-(140))e?fe4n)
(5.10)
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The new variables that have been introduced in the derivation of (5. 8),
(5.9) and (5. 10) are defined by [5.1]

€= 4n(l/p)) n = 1-p/p py =r,/R

Po =To/R A =p/p, & =tn(l/p) o =1 /R

Also, the primes indicate differentiation with respect to the variable

v’ where

1/ = 12M_t/mR®

The value of r and hence Py and §. » is the solution of Eq. (5.2)

while the static collapse pressure P, is given by (5. 1).

(2) Mechanism 1

When the value of )\ = p/p. falls in the range 1 <) < Xy
where }‘l = pl/ps deformation occurs by means of mechanism 1. The
governing equations can be found by substituting in (5. 7) the accelera-
tions found by differentiating (5.3) with respect to time and carrying
out the integration noting that M(rl. t) =0 and M(R,t) = - Mo :
Alternatively, they can be found by setting n = I(p, = 0) and n ‘=0
in Eqs. (5.9) and (5. 10). Performing either of these operations yields

2(z_-2)
Ve 1)RE+ 1) - ve'e = [ne ° - 1]e?S(e41)2 (5. 11)

2(e_-¢£)
V(e+1)(3e25-3-48)- ve ((3e2% 368 -2) = [3re  ® g(.:"'5-1)/?.

2 2
- (145)]e%5(g+1)
(5. 12)
2¢
Whenever V'=)e ®/2 an inflection point in the bending moment

diagram for M occurs at the plate center which, for pulses of the
type shown in Fig. 5.1, occurs immediately. This condition gives
Ay where )‘l = pm/p. .
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4, Solution for Rectangular Pulse

(1) Mechanism 2 Ay <

Specializing to a rectangular pulse a solution of Egs.
(5.8), (5.9) and (5. 10} is obtained if it is ansumed that € and n are
constants while the load is acting. This means that while p is constant,
T, and r, are constants. This phase of motion will be called phase la.
Setting ¢ ‘= n’=0 in (5.9) and (5.10), and substituting V' from (5. 8)
in (5.9) and (5. 10) gives

2(§' = ;) 3
2(E+ n) = )e n (2-n) (5.13)
2(g_-¢)
208+ n)1+€) = he ®  [3e25(8-141) + EB-b6n+6n°-2n°)43(1-n)]
(5. 14) *
The lower bound )‘l of A may be found by substituting .
n = l(po = 0) in (5.13) and (5. 14). Doing this gives
2¢
Age " =2(g+ 1S (5. 15)
where £ is determined by the equation
3ge2% = ) (5.16)

From (5.15) and (5.16), A, = 1.998 and € = 0.2163 (p, = 0.805).

1
For a given value of )\ such that \ > )‘l Eqs. {(5.13) and

(5. 14) give the initial values of 2 and n . Some numerical valuer

are shown in Table 5, 1.

Let the pulse end at time t =t or when 1 ‘= (A o If
the velocity of the plate center at this time be denoted by Voo integra-
tion of Eq. (5.8) gives
2°

VvV =1/2%e %+ ' = I/m
(o] “’O

where [ = Pt, is the impulse.
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Table 5.1
INITIAL VALUES OF £ AND n

ay
(0) (0)
Mechanism A 5(0) n(O) 51 o
1.1 . 302 1.0 . 739 0
1,2 .290 1.0 . 748 0
1.3 .279 1.0 . 756 0
1 1.4 .268 1.0 . 764 0
1.6 . 248 1.0 . 780 0
1.8 .232 1.0 . 793 0
1.9 - .224 1.0 . 800 0
1,998 .2163 | 1.0 . 805 0
2.0 .216 .998 | .806 . 001
2.24 ¥4 .883 1] .819 . 096
3.80 .14 .569 | .869 .375
2 6.51 .10 .395) .905 .547
9.48 .08 .313 1} .923 .634
15.71 .06 .2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>